

^{16/09/2014} Salinity Gradient Energy by Reversed Electrodialysis - REAPower

International Symposium Innovative Desalination Technologies, Seoul INES session, 03 September 2014

<u>Inge Genné</u>, Joost Helsen, VITO, Belgium Andrea Cippolina, Univ. of Palermo, Italy

VITO, VISION ON TECHNOLOGY

WHO IS VITO ?

- » A LEADING EUROPEAN INDEPENDENT RESEARCH CENTRE, LOCATED IN FLANDERS/BELGIUM;
- » 750 PEOPLE, ACTIVE IN THE AREAS OF CLEANTECH AND SUSTAINABLE DEVELOPMENT;
- » ELABORATING SOLUTIONS FOR THE LARGE SOCIETAL CHALLENGES OF TODAY.

Reduce dependence on fossil fuels

More sustainable industry

Separation and Conversion technologies (~100 people)

VITO as Product developer...

- **Membrane development** (20 patents)
 - Reinforced polymeric membranes (flat sheet-IPC, tubular, capillary)
 - Membrane contactors
 - Functionalised ceramic membranes
- » Electrodes and stacks (carbon based)

VITO as Technology integrator...

- » Membrane technology for water processing and resource recovery
 - » Equipment: MF/UF, NF, RO, MBR, ED, RED, MD, CDI
- Integrating separation processes with conversion processes
- » Setting-up demonstrators from lab to pilot scale
- » Integrated approach: engineering, analysis, TEA...

The REAPower Project

Main facts:

- » Project title: Reverse Electrodialysis Alternative Power Production
- » Call identifier: FP7-ENERGY-2010-FET (Future Emerging Technologies for Energy Applications)
- » Starting date: 1 October 2010
- » Closing date: 30 September 2014

The objective of REAPower is to prove the concept of electricity production through SGP-RE using **brine** and **sea (/brackish) water** and to develop the necessary materials, components and processes.

SGP-RE applications

Blue Energy

đ	ENA	AF	PA.	c	M
	C		D		

Concentrate	Diluate		
=	=		
Sea water	river water		

Concentrate	Diluate
=	=
Brine	Brackish or
	sea water

The REAPower Project

The idea

to produce energy from salinity gradients generated by

sea/brackish water and ultra-concentrated brines

R&D strategy

- Development of new Ion Exchange Membranes for highly concentrated solutions
- ✓ Selection of best conditions for redox couple/spacers/stack design
- ✓ Wide **experimental investigation** on lab-scale stack
- ✓ Development/validation of a predictive modelling tool
- ✓ **Economic analysis** and process sustainability on large scale (ongoing)

Improvements in membranes development

Reduced membrane resistance

Membrane specific resistance reduced to **1.5-2.5 Ω·cm²** (possibly lower in the near future – thinner membranes)

Electrochemical aspects and stack design

Experimental investigation at lab-scale

Experimental conditions investigated:

- ✓ fluid velocity (0.1 4 cm/s)
- ✓ feed temperature (20 40 °C)
- ✓ number of cell pairs (5 50)
- ✓ concentration of redox couple $(0.1 0.3 \text{ M of } K_3 \text{Fe}(\text{CN})_6 / K_4 \text{Fe}(\text{CN})_6)$
- ✓ salt concentration of both solutions.
- Membrane thickness

Showing that the SGP-RE installation works...

Experimental investigation on a lab-scale unit

e.g. Effect of fluid velocity on power output

Stack equipped with 50 cell pairs, Fujifilm membranes, Deukum 270 μ m spacers .Brine solution: 5 M NaCl, seawater: 0.5 M NaCl. T=20°C. Electrode rinse solution: 0.1 M K₃Fe(CN)₆ / K₄Fe(CN)₆ ·3H₂O + 2.5 M NaCl.

Experimental investigation on a lab-scale unit *e.g. Effect of the conc. of the concentrated solution (1 - 5 M)*

Electrode rinse solution: 0.1 M K_3 Fe(CN)₆ / K_4 Fe(CN)₆ · 3H₂O + 2.5 M NaCl.

16/09/2014 © 2014. VITO NV **EAPower**

Experimental investigation on a lab-scale unit

e.g. Effect of the concentration of the diluted solution (0.1 - 1 M)

Power density vs. current density

Stack equipped with 50 cell pairs, Fujifilm membranes, Deukum 270 µm spacers . Brine: 5 M NaCl. T=20°C. Fluid velocity: 1 cm/s. Electrode rinse solution: 0.1 M K₃Fe(CN)₆ / K₄Fe(CN)₆ · $3H_2O$ + 2.5 M NaCl.

6.0

Experimental investigation on a lab-scale unit

MAX power output conditions: T = 40°C & 0.1M (d) and 5M (c) → Membrane thickness

of blank resistance (with model solutes!)

vision on technology

CFD modelling and process simulation

Model used to predict parameter dependences

e.g. Influence of inlet concentrations

vision on technology

Influence of T

Simulations of a 50-cells stack equipped with Fujifilm membranes, Deukum spacers; fluid velocity inside channels: 1 cm/s; T=20°C. Blank resistance: 0.4 Ω .

16/09/2014

© 2014. VITO NV

The REAPower prototype installation site

The singular framework of Trapani saltworks

The REAPower prototype installation site

The "Ettore-Infersa" saltworks

Installation place within an old, restructured WINDMILL

Direct access to both saturated brine and seawater from open channels

22

Prototype installation: plant specifications

Site features

- Seawater availability: unlimited;
- Brine availability: 10-15 m³/h (much larger with feed-recycle);
- Brine concentration: variable between 250 and 320 gr/lt.

Prototype features

- RED stack dimensions: 44x44 cm
- 500 cell pairs;

→ Expected power density: > 5 W/m²

Process Flow Diagram & recycle option

Status:

- Optimisation of pilot on-going
- Technico-economical evaluation for different applications on-going

More information:

<u>www.reapower.eu</u> (Movie shortly available)

