

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM)

Reverse Electrodialysis Process: Analysis of Optimal Conditions for Process Scale-up

Michele Tedesco

P. Mazzola, A. Tamburini, G. Micale,

I. D. L. Bogle, M. Papapetrou, A. Cipollina

Desalination for the Environment, Clean Water and Energy Cyprus, 11 -15 May 2014

Outline

Introduction

- Principle of Reverse Eletrodialysis
- Non-ideal phenomena
- Focus of the work

Modelling

- Model assumptions
- Governing equations
- Process simulator
- Validation

Results

- Different path length for diluate/concentrate
- Exploring the optimal operating conditions
- Simulation of large-scale pilot
- Process simulation for a 3 RED units plant

Conclusions

Principle of Reverse Electrodialysis

Modelling 2.

3. Results

DILUATE

OUT

CONCENTRATE

OUT

Non-ideal phenomena

- non-ideal IEMs permselectivity ٠
- Solvent transport through IEMs ullet
- Concentration polarisation phenomena

Focus of the work

GOAL:

Development of a **simulator for RED Process** using

sea/brackish water and brine as feed solutions

Model assumptions 2D model \checkmark pure NaCl aqueous solutions \checkmark negligible parasitic currents for electrodic \checkmark HIGH path length (L) discretisation steps: solution HIGH $\Delta x = L/10$ IN $\Delta y = b/10$ v LOW path length (b) INIVERSITÀ LOW DEGLI STUDI DI PALERMO IN

Governing equations

- Activity and osmotic coefficients
- Equivalent conductivity
- o Density
- o Viscosity
- <u>Electric variables</u>
 - o Cell pair voltage
 - o Solutions and membranes resistance
 - o Parasitic currents in manifolds
- <u>Transport eq. through membranes</u>
 - o Salt transport
 - o Solvent transport
- Mass balance and polarisation phenomena

o Gross power

$$P = I_{ext}^2 R_u$$

$$P_{pump} = \frac{\Delta P_{HIGH} \ Q_{HIGH}^{tot} + \Delta P_{LOW} \ Q_{LOW}^{tot}}{\eta_p}$$

o Gross Power density

$$P_d = \frac{1}{N} \left(\frac{I_{ext}}{A}\right)^2 R_u$$

o Net Power density

$$P_{d,net} = P_d - \frac{P_{pump}}{NA}$$

M. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, and G. Micale, *"A simulation tool for analysis and design of Reverse Electrodialysis using concentrated brines"*, Chemical Engineering Research & Design, accepted for publication (2014).

Process simulator

Validation on a lab-scale unit

Experimental (points) and simulated (lines) data for a 50-cells stack equipped with Fujifilm membranes, Deukum 270 μm spacers; feed flow velocity: 1 cm/s; T=20°C. Experimental data collected at VITO (Belgium).

Different path length for diluate/concentrate (1/2)

• Effect of Aspect Ratio on Power Density

Simulations of a 100-cells stack equipped with Fujifilm membranes, **270** μ m spacers; C_{LOW} = 0.1 M; C_{HIGH} = 5 M; v_{HIGH} = v_{LOW} = 1 cm/s; membrane width: b = 20 cm; T=30°C.

Different path length for diluate/concentrate (2/2)

• Effect of Aspect Ratio on Power output

Simulations of a 100-cells stack equipped with Fujifilm membranes, **270** μ m spacers; C_{LOW} = 0.1 M; C_{HIGH} = 5 M; v_{HIGH} = v_{LOW} = 1 cm/s; membrane width: b = 20 cm; T=30°C.

Exploring the optimal operating conditions (1/3)

Effect of salt concentration

Exploring the optimal operating conditions (2/3)

Effect of concentration/flow rate for diluate

Simulations of a **20x20 cm²** stack (**100-cells**) equipped with Fujifilm membranes, **270** μ m spacers; C_{HIGH} = 4.7 M; v_{HIGH} = v_{LOW}; T=20°C.

1. Introduction

Exploring the optimal operating conditions (3/3)

Simulation of large-scale pilot (1/2)

Scenario #	Stack size (cm)	cell pair Area	N° cell pairs	Notes
1	22 x 22 🔳	0.05 m ²	100	Reference case (small prototype)
2	22 x 22 🗖	0.05 m ²	500	Larger number of cell pairs
3	44 x 44 🔲	0.20 m ²	500	symmetrical stack
4	22 x 88 📼	0.20 m ²	500	asymmetrical stack, AR = 4
5	44 x 88 🔲	0.44 m ²	500	asymmetrical stack, AR = 2
6	22 x 88 📼	0.20 m ²	500	asymmetrical stack, different velocity (v _{LOW} = 1 cm/s, v _{ніGH} = 2 cm/s)

Overall conditions:

- HIGH concentration:
- LOW concentration:
- Temperature :
- Fluid velocity:

5 M NaCl 0.1 M NaCl 30°C 1 cm/s (except for scenario # 6)

Simulation of large-scale pilot (2/2)

Gross and Net Power density

Process simulation for a 3 RED units plant (1/4)

Investigated layouts

Process simulation for a 3 RED units plant (2/4)

Inlet diluate flow rate: <u>20 l/min</u>

3 stacks (500 cells) equipped with Fujifilm membranes 44×44 cm, 270 μ m woven spacers. C_{HIGH} = 5M; Q_{HIGH} =29.4 lt/min; make-up of brackish water, Q_{MU} = 20 lt/min, C_{MU} = 0.03M

Process simulation for a 3 RED units plant (3/4)

Inlet diluate flow rate: <u>29.4 l/min</u>

3 stacks (500 cells) equipped with Fujifilm membranes 44×44 cm and 270 μ m woven spacers. C_{HIGH} = 5M; Q_{HIGH} =29.4 lt/min; make-up of brackish water, Q_{MU} = 29.4 lt/min, C_{MU} = 0.03M. Process simulation for a 3 RED units plant (4/4)

• Inlet diluate flow rate: 40 l/min

3 stacks (500 cells) equipped with Fujifilm membranes 44×44 cm and 270 μ m woven spacers. C_{HIGH} = 5M; Q_{HIGH} =29.4 lt/min; make-up of brackish water, Q_{MU} = 40 lt/min, C_{MU} = 0.03M.

Conclusions

✓ A Simulator for RED process was developed

 Asymmetrical stack design (i.e. longer path for concentrate) increases process performance

- ✓ brackish water flow rate/concentration are key parameters for the process
- ✓ Power output >1 kW can be reached using 3 RED units (44x44 cm², 500 cell)

pairs)

Acknowledgments

www.reapower.eu

Project title:Reverse Electrodialysis Alternative Power ProductionCall identifier:FP7-ENERGY-2010-FET

(Future Emerging Technologies for Energy Applications)

The Future

of sustainable energy production

Next events on Salinity Gradient Power

INES Events

- o 10-11 June 2014
- o 23 June 2014

CAPMIX Conference

o 10-12 September 2014

Montreal (Canada) Brussels (Belgium)

Leeuwarden (The Netherlands)

Thank you for your attention

EuroMed 2015 Desalination for Clean Water and Energy Palermo, Italy, 10-14 May 2015

Michele Tedesco michele.tedesco@unipa.it

