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RED CHANNELS 
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Channel 
geometry 

Fluid Dynamics Performance 

•Hydraulic friction 

•Concentration 
Polarization 

Separation of membranes 

Advantages 
•Lower ohmic resistance 
•Lower friction factor 
•Shadow effect avoided 
•Lower costs 

Spacers Profiled 
Membranes (PM) 
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OBJECTIVES, TOOLS AND ACTIVITIES 
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Objective: prediction of fluid flow and mass transfer 
in channels with PM for RED stacks  

- Comparison with empty and spacer-filled channels 

- Process efficiency 

Tools: 3D-Computational Fluid Dynamics (CFD) 
modelling 

Activities: parametric analysis 

- Channel geometry: shape, size and pitch of profiles 

- Channel orientation  (fluid flow direction) 

- Reynolds numbers typical of RED applications 
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NUMERICAL METHODOLOGIES 
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CASES INVESTIGATED 
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Profiles’ s shape 
 Square (s) 
 Circular (c) 

Fluid flow direction α 
1) 0° 
2) 45° 

Reynolds number Re 
0.5, 2, 8, 32 

l

L

α45

α0

l

L

α0

α45

Profiles in square pitch 

Sizes 
h = 160 μm 
l = 0.75, 1, 1.5 mm 
L = 2, 3, 4 mm 
(indicated  as l0.75, l1, 
l1.5 and L2, L3, L4) 

Empty ch. and spacer-filled ch. for comparison 

Woven spacer 
h = 0.16 mm 
mesh length = 0.46 mm 
 

GOOD MIXING 
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CFD MODELING 

The finite volumes code Ansys-CFX 14 was employed to discretize and 
solve the governing equations (Newtonian and incompressible fluid). 
Steady regime at all flow rates investigated 
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NaCl solution 
at T = 25 °C 

Molarity 
[mol/l] 

Density 
[kg/m3] 

Viscosity 
[Pa s] 

Diffusivity 
[m2/s] 

Seawater 0.5 1017.2 9.31e-04 1.47e-09 
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BASIC EQUATIONS* 
Transport equation for a binary electrolyte 
 

Accumulation   Convection                      Diffusion               Migration 
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salt diffusivity  solvent concentration solvent velocity ≈ u transport number  
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*J.S. Newman, Electrochemical Systems, Second Edition, 2nd edition, Prentice Hall, Englewood Cliffs, NJ (1991) 

 K. Kontturi, L Murtomäki, J.A. Manzanares, Ionic Transport Processes In Electrochemistry and Membrane Science, Oxford University Press (2008) 

   i j

i i ij j i j i

j j T ij

C C
C K u u RT u u

C D
     

z C z C    

Electroneutrality condition 
binary electrolyte 

Multicomponent diffusion equation (Stefan-Maxwell) 
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CFD MODELLING DEVELOPMENT 
Implementation of transport equations 

Assuming density as a linear function of C 
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CFD MODELLING DEVELOPMENT 
Implementation of transport equations 

 

 

• Current density 

• Equations system not closed 

• Above transport equation can be solved when 

• coupled with other equations → entire stack as domain 

• or when current density distribution is known (spacer-less channel) 

Migrative term  
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CFD MODELLING DEVELOPMENT 
Implementation of transport equations 

• Concentration profiles were unaffected by the migrative term 

• Migrative term is negligible compared to the diffusive one 

• → Migrative flux is quite uniform 

Simulations of an empty channel 
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most unfavourable case (low concentration and high current density) 
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MODELLING APPROACH 
Transport equation implemented for Unit Cell 

( , , , )C C x y z t k s  

Periodic concentration 

Fully developed flow → Linear variation of concentration along the flow direction (s) 
Periodic boundary conditions despite the change of the bulk concentration 

Transport equation for the electrolyte in unit cell 

,
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Q
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Ingoing flux throug membrane 

Fluid flow direction 
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MODELLING APPROACH 
Computational domain 
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Brine 

Sea 
water Brine 

+ + - - 

One channel 
No double layer 

α0 

α45 

0.16 mm 

0.16 mm 

PM channel 
Spacer-filled 

channel 

Unit Cell 
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MODELLING APPROACH 
Wall boundary at membrane-solution interface 
CEM 

NaCl 0
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Uniform flux at the membrane-solution interfaces, corresponding to i = 200 A/m2, 
a provisional value achievable in systems optimized for high power density by the 
use of highly conductive solutions and membranes 
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MODELLING APPROACH 
Wall boundary at the lateral surfaces 

Flux set nil at the lateral walls (fluid-membrane profile interfaces) 
• Highly conductive solutions as seawater and profiles with high length (l) compared 
to the height (h) → ion close to the membrane profile would across easier solution 
and membrane rather than profile and membrane 
•Areal resistance per unit of thickness  3 Ωm for membr.,  0.2 Ωm for seawater 
• Ionic current across the membranes’ profiles expected low due to their small area, 
→ its contribution to the overall current is negligible 
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MODELLING APPROACH 
Mesh and grid dependence analysis 

Hexahedral mesh: 30 volumes in the vertical direction (ch. thickness) 

~ 1·106 to ~4·106 volumes 
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(d)(b)(a) (c)

Grid dependence: 10 to 60 vertical divisions 
• results independent of the discretization degree 
• computational savings 

 Spacer-filled channel: hybrid 
mesh with tetrahedra near the 
filaments and hexahedrons 
elsewhere 

1.6·106 volumes  
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RESULTS 
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Influence of profiles’ shape, 
flow attack angle and Re 

(l = 1 mm, L = 3 mm) 
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Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

s-l1-L3-α0 s-l1-L3-α45 

c-l1-L3-α45 c-l1-L3-α0 

VELOCITY FIELD 
Plane x-z middle, Re = 8 
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• Full thickness obstacles 
→ absence of vertical 
component of velocity 
 
• Zigzag flow path 
 
• Symmetry features 
 
• Velocity increases 
between adjacent profiles 
 
• Calm zones upstream 
and downstream the 
profiles, especially for α0 
 
• Less homogeneous 
velocity distribution for 
square shape 



Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

s-l1-L3-α0 s-l1-L3-α45 

c-l1-L3-α45 c-l1-L3-α0 

CONCENTRATION FIELD 
Plane x-z middle, Re = 8 
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• Highest concentration 
(maximum polarization) 
in: (i) the calm regions; (ii) 
all around the profiles due 
to zero velocity at the 
walls  
 
• α more crucial than 
profile shape 
 
• α45 → more uniform 
concentration field, 
particularly for case of the 
square profile (s-l1-L3-
α45) 



Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

CONCENTRATION FIELD 
Concentration profiles, c-l1-L3-α45 
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• Higher Re → increased 
inertial phenomena as 
separation, recirculation, 
and reattachment → fluid 
mixing enhancement 
 
• Equal profiles obtained at 
Re = 0.5 and Re = 2, due to 
creeping flow conditions at 
very low Re numbers 
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Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

FRICTION FACTOR 
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•The presence of obstacles causes f 
slightly higher than the empty ch. 
 
• Much higher pressure drop for the 
spacer-filled ch. 
 
• α has irrelevant effects 
 
• The square shape implies f a bit 
higher than the circular one 
 
• At the lowest Re numbers, n = -1 
was found → creeping flow regime 
 
• At higher Re, n deviates from -1, 
since the obstacles induce increasing 
inertial effects → flow fields not self-
similar 
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Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

POWER NUMBER 
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• The square shape requires 
Pn increased of about 8% with 
respect to the circular shape 
 
• α is irrelevant 
 
• Circular and square profiles 
provide an increment in Pn of 
about 23% and 33% respect to 
the empty ch. 
 
• The spacer-filled ch. requires 
pumping costs increased of 
~570% 

0.1 

1 

10 

100 

1000 

10000 

100000 

0.1 1 10 100 

P
n

 [
-]

 

Re[-] 

s-l1-L3-α0 

s-l1-L3-α45 

c-l1-L3-α0 

c-l1-L3-α45 

empty 

spacer 

mPn BRe

2 4
3

3

1
SPC

8

h
Pn f Re




  ,SPC s mean

p
u

l






Results: Influence of profiles’ shape, flow attack angle and Re (l1-L3) 

23 

POLARIZATION FACTOR 
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•.Very slight θ increase at the lowest Re due 
to a creeping flow 
 
• Mixing not favored at low Re due to the 
calm regions → θ lower than the empty ch. 
 
• Higher Re/Pn: mass transfer enhancement 
and all the configurations provide similar θ 
approaching the spacer-filled ch. 
 
• α affects significantly the mass transport 
 
• High polarization regions with α0 → lower θ 
 
• The shape of profiles is more influent for 
α0, where the circular shape allows higher θ 
 
• In diluted solutions θ would be much lower 
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Influence of profiles’ size l and 
pitch L 

(c-α45, Re =8) 
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Results: Influence of profiles’ size l and pitch L (c-α45, Re =8) 

CONCENTRATION FIELD 

c-l1-L2-α45 

c-l0.75-L3-α45 

c-l1-L3-α45 

c-l1.5-L3-α45 

c-l1-L4-α45 

Increasing L 

Increasing l 

Plane x-z middle 

• Less uniform concentration 
field, as L increases 
 
• Conversely, smaller 
variation as l decreases 
 
• The highest polarization 
appears to be at the 
intermediate l 
 
 
• Different dependence of 
the mixing degree on the 
two parameters 
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Results: Influence of profiles’ size l and pitch L (c-α45, Re =8) 

26 

POWER NUMBER 
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Decreasing l • As L/l increases, f is reduced and it 
will tend to attain the value relevant 
to the empty channel 
 
• For a given L/l, the absolute value of 
the two parameters has a negligible 
impact 
 
• When L/l decreases → considerable 
increment of Pn, up to 62% more than 
the empty ch. 
 
• Pn remains noticeably lower than 
the one exhibited by the spacer-filled 
ch. 
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POLARIZATION FACTOR 
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• Increasing L, lower θ are obtained; 
conversely, as l decreases, the trend is 
not monotone (minimum value for the 
middle case) 
 

• Maximum θ for c-l1-L2-α45 which is 
also the case with the highest f and Pn 
 

• Comparable θ is found respect to the 
empty ch. 
 
 

• Mixing quite less favoured with 
respect to the spacer-filled ch. 
 

• Mass transfer enhancement achieved 
by filling more the channel, 
accomplished along with greater Pn→ 
performance similar to the spacer 
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CONCLUSIONS 
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CFD modelling of Profiled Membranes ch. for RED 
- Fluid flow and mass transfer behaviour 

- Parametric analysis of: 

       · Channel geometry 

       · Channel orientation  

       · Re effects 

- Comparison with empty and spacer-filled channel 

- Process efficiency: Pn and θ 

OPTIMAL CHANNEL CONFIGURATION 
Influence of various factors on efficiency. Fundamental features of PM: 
significant reduction of pumping costs respect to a spacer and endless 
geometric possibilities. Suitable PM geometry and Re → better mixing, 
which, combined with the other advantages, could make the PM ch. 
the best choice for the optimization  

CONCLUSIONS 
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