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The idea:

« Capturing energy from Salinity
Gradient Power (SGP) by
Reverse Electrodialysis (RE)
using brine as concentrated
solution, and seawater as diluted
solution instead of seawater as
concentrated and fresh water as

diluted
Ve

*To avoid the use of freshwater

*Higher theoretical energy
extractable

Reduction of the internal electrical
resistance of the stack



Reapower objectives:

Create/select and optimize materials and
components tailored to the requirements of
the SGP-RE technology operating with high
salinity brine and seawater. These include the
membranes, spacers, electrodes and
electrolytes

Optimize the design of the SGP-RE cell pairs and
stack using a computer modelling tool developed
for that purpose

Verify the model, and assess the developed
materials, components and design through tests
on laboratory stacks.

Evaluate and improve the performance of the
overall system through tests on a prototype fed
with real brine from a salt pond

Evaluate the results, analyze the economics and
assess the perspectives of the technology

r WWW.reapower.eu
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New lon Exchange
Membranes (IEMs) for
highly concentrated
electrolyte solutions
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Membrane electrical resistance
ohm’s law T
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With DC: resistance (R) With AC: impedance (2)
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Using an AC over a frequency range, it is possible to
distinguish phenomena proceeding at different rates
like polarization phenomena at the membrane interface

GM A. Antony et al. Journal of Membrane Science 425-426 (2013) 89-97




At the interface between a solid ionic conductor (like an IEM) and a
liquid electrolyte, physical and electrical properties change suddenly
because of an heterogeneous charge distribution (polarization) which
reduce the overall electrical conductivity of the system.
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. . V

~ = R =~
4+ R buik |

+ » unable to distinguish the
resistance of the ionic conductor
from the interface resistance

R

interface
-9

%
A e % With AC: impedance (Z)
O (@)
v’ itis possible to separate the

R . U
Solid ionic conductor solid
contribution of the solid electrolyte

(o)
Z(w) ) o =21V
‘- from the contribution of its interface
ITM .
to the total resistance



Electrochemical Impedance Spectroscopy (EIS)
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GM E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy. Theory, Experiment, and. Applications, Second Edition. John
Wiley & Sons, New Jersey, 2005.



The bipolar
concentration
polarization is

time dependent
and the
concentration
profiles undergo
an inversion
during each AC
cycle

Riot = Rm+s T Reai T Ryp
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AC cycle




Homogeneous reinforced PEM - Fuji-CEM-1 .
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Electrochemical Impedance Spectroscopy (EIS)

Impedance
analyzer

WE

Feed j Membrane\

1000-0.01 Hz; 10 mV

« Solution velocity (1.5 -4 cm s)

v « Solution concentration (0.5 - 4 M)
T™ |

» Temperature (20 - 40°C)

@I
E. Fontananova et al. J. Membr. Sci. 459(2014)177-189



Equivalent circuit model used to fit EIS spectra
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E. Fontananova et al. J. Membr. Sci. 459(2014)177-189
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Effect of the solution velocity
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E. Fontananova et al. J. Membr. Sci. 459(2014)177-189



Interface resiatance (Q cm?)

Effect of the solution velocity
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R, is indipendent from the solution velocity
R4, decreases with the increasing of the velocity
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Membrane and interface resistances

AMR Red| Rdb| .

Membrane (Qcm?) (Qcm?) (Qcm?) Thickness (num)
Fuji-AEM-1 1.63+0.001 0.0259+0.003 0.0860+0.007 166*1
Fuji-AEM-2 1.55+0.001 0.0135+0.002 0.0667+0.003 129+2
Fuji-AEM-3 1.10+0.001 0.0184+0.003 0.0562+0.004 109+2
Fuji-CEM-1 2.65+0.001 0.107+0.006 0.362+0.020 170+1
Fuji-CEM-2 2.97+0.001 0.0759+0.006 0.299+0.010 114+2
Fuji-CEM-3 1.64+0.001 0.149+0.005 0.146+0.031 11312

0.5M NaCl; 20°C; 2.8cm s?;
_ _ _ lon Mobility?2 Stokes .

Membrane resistance is higher (10 m2V-isl)  radiusb (4)
than interface resistances CI- 6.88 1.21
Na* 4.98 1.84

CEMs have higher resistances

than AEMs a3, Koneshan et al. J. Phys. Chem. B 1998, 102, 4193-4204
‘;M bP.C.F. Pau et al. J. Phys. Chem. 1990, 94, 2671-2679



Interface resistance @ cm?)

Effect of the temperature
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» The resistance of the ion transport through the
membrane decreases with the temperature, because of
the increasing ion mobility



Use of concentrated

electrolyte solution
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Stern layer diffuse layer bulk solution

For a symmetric monovalent electrolyte the
Debye length (1/k), i.e. how far the net
electrostatic effects of charge carriers in
solution persist, is reciprocally proportional
to the square root of the concentration (C,)

1/k=_| =2
I ' '
) A QU X
1/k
RUSSG', W.B., SaVi”e, D.A. and SChOW&'ter, W. R. Colloidal Schematic representations of EDL structures
Dispersions, Cambridge University Press, 1989. according to the Gouy—Chapman-Stern model
K. Bohinc, V. Kralj-Iglic, A. Iglic, Electrochim. Acta 46 (2001) 3033-3040 (reproduced D. Handy et al. The ecotoxicology

and chemistry of manufactured nanopatrticles,
in Ecotoxicology, Springer 2008)

The thickness of the EDL is approximately the Debye length and it is
expected to decrease with the solution concentration because an
increasing shielding of the attractive electrical interactions between the

counter-ions and fixed charged groups of the membrane, increasing

ot solution concentration (or ionic strength for multivalent electrolytes).



Effect of the solution concentration

Membrane R Rea) R R Rea (Q Rapi (Q
(Q cm?) (Q cm?) (Q cm?) (Q cm?) cm?2) cm?)

VAV B4 1.551+£0.001 0.013%£0.002 0.067#0.003 1.436%0.001 - 0.167%0.014

SRS\ Ed 2.974£0.001 0.076%0.006 0.299+0.010 3.501%0.050 - 0.131+0.001

Conditions: 2.8 cm s, 20+1°C

» With AEM-2 a small decrease of the R, is observed from 0.5 to 4M
solution (-7%).

» On the contrary, R, increases for the CEM-2 (+18%)
Of course, considering also the solution resistance the effect is a

neat reduction of the total resistance in both cases (R, for 0.5 M:
ﬁ.Sl Qcm?. for 4 M: 0.83 Qcm?)



Effect of the external solution concentration on membrane

(o2}
o

Water uptake (%)
N w N
o o o

=
o
|

>

>

' ITM

water uptake

5

a1
o

- Fuji-CEM-2 4__ ________________ % ________________________________ +
5 © 26%for CEM | 2= | % °®
- 2 FUji-AEM-2
. e 33 = 3 0
] FulrAEM2 -7% for AEM § 1 o o ©
S 27 Fuji-CEM-2
: s
g .
T T T T T T T T T 0 T T T T T T T T T
0 1 2 3 4 o 0 1 2 3 4
NaCl (mol/L) 20£1°C NaCl (mol/L)

Increasing the solution concentration the membrane water uptake decreases
and the fixed charge density increases.

The Fuji-CEM-2 is more sensitive to shrinking going from the 0.5 to the 4M
solution than the Fuji-AEM-2 (-26% of mass swelling vs. -7%) because of its
lower fixed charge density (=> higher osmotic pressure difference between
the external solution and the membrane).



» Decreasing the
membrane water uptake,
the hydrophilic
channels of the IEMs
(pathway for ions and
water transport) become
more narrow

» Moreover, increasing the
fixed charge density the
lon transport through
the membrane is more
difficult because of the
stronger interactions
between the mobile ions
and the fixed charged
groups that can form
Isolated ionic domains
not well interconnected
each other
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Temperature evolution of the 'H NMR spectra of the
membranes swelled up to saturation in salt solutions
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Self-diffusion coefficients (D) of water confined in the
IEMs swelled up to saturation in salt solutions calculated
by pulsed gradient spin echo (PGSE)-NMR technique

O. Stejskal and J. E. Tanner The Journal of Chemical Physics 1965, 42, 288
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concentration => change in membrane microstructure
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CONCLUSIONS

The EIS is a powerful, non-invasive and non-destructive, technique to
characterize the ion transport resistance through membranes and interfacial
layers (electrical double layer and diffusion boundary layer).

The areal membrane resistance was higher than interface resistances in the
whole range of solution concentration, temperature and velocity investigated
(0.5-4 M; 20-40°C; 1.5-4.0 cm s1) and it did not depend significantly from the
solution velocity.

On the contrary, the interface resistances can be reduced increasing the
solution velocity.

The CEMs were characterized by an higher electrical resistance in comparison
with the AEMSs.

Membrane and interface resistances decreased with the temperature

Increasing the solution concentration from 0.5 to 4 M the membrane resistance
decreased for the Fuji-AEM-2 (charge density 4.1£0.4 mol/L in 4M) but
increased for the Fuji-CEM-2 (charge density 3.0£0.2 mol/L in 4 M).

The increased electrical resistance was due to changes of the membrane
microstructure in concentered electrolyte solution, as confirmed by NMR
analyses.

As a consequence, it was evident the necessity to use membranes with a
fixed charge density higher, or at least similar, to the external solution in

‘I-M the case of electromembrane processes operating with concentrated

solutions
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